

Nursery propagation and seed biology of threatened flora for translocation.

S. R. Turner ^{1, 2, 3}

¹ Kings Park Science, Department of Biodiversity Conservation and Attractions, Kings Park 6005, Western Australia
²The University of Western Australia, Stirling Hwy, Crawley, 6009, Western Australia
³Curtin University of Technology, Kent Street, Bentley, 6102, Western Australia

Kings Park Science has utilised an integrated conservation approach for many threatened species including:

- *Grevillea scapigera* (Proteaceae)
- Symonanthus bancroftii (Solanaceae)
- Eremophila resinosa (Scrophulariaceae)
- Darwinia masonii (Myrtaceae)
- Lepidosperma gibsonii (Cyperaceae)
- Androcalva perlaria (Malvaceae)
- *Ricinocarpos brevis* (Euphorbiaceae)
- Tetratheca erubescens (Elaeocarpaceae)

Propagation & seed research integral components

Plant production for translocation Summary of main approaches

Propagation method	Cost	Time frame for field ready plants	Equipment & facility support needed	Advantages	Disadvantages	Example
Seeds	Low	Short (4 - 8 m)	Low (basic accredited nursery facilities)	Greenstock with strong root systems	Only practical when seed is available & seed biology understood i.e. seed quality, dormancy & germination requirements	Acacia woodmaniorum
Cuttings	Low-medium	Short (4 - 12 m)	Low to medium	Overcomes seed bottlenecks Produces semi mature plants	Plants may not perform as well due to weaker root systems, not all plants strike from cuttings, slower than seeds.	Darwinia masonii
Division	Medium	Short - medium (6 -24 m)	Low to medium	Can work well with rhizomatous plants, overcomes seed bottlenecks	Slow to establish, takes up a large amount of space, only applicable to a niche group of plants	Lepidosperma gibsonii
Tissue culture	High	Medium-long (>12 m)	High	Small amount of material required, overcomes seed & other bottlenecks, large rates of multiplication	Many potential bottlenecks i.e multiplication, root induction, deflasking	Synaphea quartzitica

Plant production cont. (excluding tissue culture)

- Direct seeding in situ potentially very cheap however emergence and persistence low
- Direct seeding into pots useful when seeds are not limiting & germinate easily
- Prick out seedlings from Petri dishes useful with fewer seeds & germination bottlenecks
- Cuttings strike cuttings in punnets then remove & pot up (slower)
- Cuttings strike cuttings directly into forestry pots (quicker)

However, seed derived plants commonly perform better than cutting derived plants

Androcalva perlaria in situ translocation – Wellstead region

Propagation method	% survival - 2 yrs
Seedlings (n = 80)	78.8 ± 10.0
Cuttings (n = 80)	53.8 ± 13.4

Where possible seed is preferable though clearly not always an option...

Seed dormancy within WA DRF

- ~429 DRF from ~45 families
- Based mainly on the characteristics of related species we find:

~15 % likely to possess non-dormant seeds

~19 % likely to have physical seed dormancy

~44 % likely to have physiological seed dormancy

~12 % likely to have underdeveloped embryos (MD or MPD)

- UP TO 75% MAY HAVE SOME FORM OF SEED DORMANCY
- May(?) confer seed persistence within the soil seed bank

Morphophysiological dormancy

Physical dormancy

Physiological dormancy

Fire related cues for promoting germination in DRF

- \sim 44%(?) likely to respond to smoke (\sim 20 families)
- $\sim 20\%$ (?) likely to be heat responsive (3 families)
- Need to identify triggers for better management of DRF *in situ* and for *ex* situ conservation collections
- Dormancy may interact with fire cues so what are the conditions for breaking dormancy & stimulating germination?

i.e. afterripening, wet/dry cycling, & stratification

Germination responses to incubation temperature and fire related cues

Map In Part Cole 107, Vet and Consider Service, 3098

In situ seed persistence

Androcalva perlaria – Physical seed dormancy

		Months of <i>in situ</i> burial							
		0 months	12 months		24 months	36 months		62 months	
% Seed Fill	ç	98.5 ± 1.0%	94.1 ± 2.5%		94.5 ± 5.5%	94.0 ± 2.0%		88.5 ± 6.2%	
Lab germination	n								
Untreate		8.0 ± 2.3%	0.0 ± 0.0%		0.0 ± 0.0%	0.0 ± 0.0%		0.0 ± 0.0%	
HW - 1 m	nin 9	91.0 ± 4.4%	96.9 ±	3.1%	99.0 ± 1.0%	97.8 ± 1.3%		100.0 ± 0.0%	
Symonant	hus band	<i>croftii</i> – Ph	iysiologica	ll seed doi	rmancy			γ	
	0 months	5 months	12 months	17 months	24 months	28 months	36 months	76 months	
	Spring	Autumn	Spring	Autumn	Spring	Autumn	Spring	Autumn	
% Seed fill	94.3 ± 2.5%	88.8 ± 2.1%	90.3 ± 1.4%	89.3 ± 2.8%	80.8 ± 3.0%	84.7 ± 2.2%	89.0 ± 2.0%	88.5 ± 3.3%	
Lab germination Water 1 µm KAR₁	0.0 ± 0.0% 0.0 ± 0.0%	0.0 ± 0.0% 16.7 ± 7.6%	0.5 ± 0.5% 20.7 ± 11.3%	0.6 ± 0.6% 81.1 ± 14.4%	0.0 ± 0.0% 14.7 ± 2.7%	3.1 ± 1.7% 79.0 ± 7.7%	0.9 ± 0.9% 2.5 ± 0.8%	2.9 ± 1.6% 86.4 ± 5.1%	
	0.0 - 0.0 /0		Dry seas				Dry seas		
		Terres Research	лагани какали казини 2010		Vet seaso	n 	Dec 1891 Sec 283 Pole 222 1	TREAS TREAS	

Fire driving seedling recruitment

Androcalva perlaria

Seed priming

- Used to improve various germination parameters
- *R. brevis* seeds exposed to priming treatments: 0 5 days
- Seeds were dried back before incubation
- Hydropriming enhanced total germination & rate

Ricinocarpos brevis

Conservation and Attractions Priming improves water stress tolerance

 Germination in response to water stress assessed

Department of Biodiversity,

- Different priming treatments
- Priming improved overall germination and water stress tolerance

Field emergence -Seed based translocation-

21

Southern Cross rainfall figures

23

15

Ricinocarpos brevis

9

Assessment date

	A Kas	E.V.		August 2014	October 2014	October 2014	February 2015
and shaked	STATE AS			9 weeks	16 weeks	18 weeks	34 weeks
Shadecloth	Weekly	Seed		Average	Average	Average	Average
guard	irrigation	Location	Seed pre-treatment	emergence	emergence	emergence	emergence
yuaru	ingation	Location		(% ± SE)	(% ± SE)	(% ± SE)	(% ± SE)
		Surface	None	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
		Surface	10% smoke water	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
		Buried	None	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
		Buried	10% smoke water	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Yes		Buried	10% smoke water	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
		Buried	Hvdropriming with GA ₂ and Kar.	0.0 + 0.0	0.0 + 0.0	0.0 + 0.0	0.0 + 0.0
Yes	ncour	aning	improvement ho	MOVOr	morev	vork to	dol
	ncour	aying	improvement no				u0:
	Yes	Buried	10% smoke water	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Yes	Yes	Buried	10% smoke water	0.0 ± 0.0	2.5 + 1.3	4.0 ± 2.5	1.0 ± 1.0
	Yes	Buried	Hydropriming with GA_3 and Kar_1	0.0 ± 0.0	(3.5 ± 3.5	5.0 ± 4.5	3.5 ± 3.5
Yes	Yes	Buried	Hydropriming with GA ₃ and Kar ₁	0.0 ± 0.0	7.5 ± 4.9	9.0 ± 4.7	4.5 ± 2.7

Summary

- Kings Park Science has been involved in many different plant conservation projects
- An integrated conservation model is useful for good outcomes
- Most DRF are likely to possess seed dormancy
- Seed dormancy may enhance soil persistence
- Many DRF are likely to respond to fire related cues
- Understanding seed ecology improves germination under *ex situ* and *in situ* conditions
- Seed enhancement techniques can aid *in situ* conservation efforts

Thanks for listening

- Christine Best
- Carole Elliott
- Arielle Fontaine
- Wolfgang Lewandrowski
- Susan Whiteley
- Todd Erickson

Acknowledgements

- Bob Dixon
- Eric Bunn
- David Merritt
- Ben Miller
- Jason Stevens
- Matt Barrett

- Kingsley Dixon
- Sarah Barrett & DBCA
- Staff and students at Kings Park
- Cliffs Natural Resources
- Grange Resources
- Florabase www.florabase.wa.gov.au